作者

社计师学院

浏览

本课程面向社会科学研究者,采用Python介绍机器学习的基本逻辑(需要学员提前安装Anaconda),主要内容包括三(或四)个部分:1. 机器学习简介:从泰坦尼克号讲起;2. 机器学习初步: 朴素贝叶斯与线性回归;3. 机器学习进阶:支持向量机与随机森林;4. 机器学习扩展:基于Pytorch的神经网络模型(备选)。

现有的中心化和分布式机器学习机制所伴随的数据获取成本高、易被攻击、缺少高效数据融合方法等缺点,限制了数据资源的开发以其流通,在很大程度上阻碍了机器学习的广泛落地应用。为解决这些问题,本项目的研究中提出去中心化建模的概念,与传统分布式建模不同,将模型训练分散到海量数据端,建设一个利于机器学习的数据资源可持续开发与流通的生态环境,促进未被利用的海量数据的价值开发,对互联网、大数据、人工智能同实体经济深度融合具有重要的推进作用。